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According to the Einstein relation the ratio between independent measurements of fluctuations �e.g., diffu-
sivity� and the response to a weak external field �e.g., mobility� is equal to the thermal temperature when the
system is kept close to thermal equilibrium. For strongly disordered systems, which are not self-averaging this
ratio is a random variable and hence in this sense the Einstein relation is not valid. Thus effective temperatures
found using the fluctuation dissipation ratio are at least in some cases stochastic variables. This scenario is
tested with the quenched trap model. An average over an ensemble of systems yields an averaged effective
temperature, which is compared with results obtained from the mean-field continuous-time random-walk
model.
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I. INTRODUCTION

The Einstein relation teaches us that a measurement of the
diffusion coefficient D of Brownian particles gives the re-
sponse of these particles to a weak external field according to
D=�kBT, where � is the mobility and T is the temperature.
This profound relation is generalized by the fluctuation-
dissipation theorem �1� which relates fluctuations of systems
in thermal equilibrium to their response to weak external
fields. More recently fluctuation dissipation ratios where
used to characterize dynamics of systems far from equilib-
rium, for example, glassy systems and turbulence �2–10�. For
usual Brownian motion, and for a system close to thermal
equilibrium we may think of temperature as a ratio between
fluctuation �D� and dissipation ��1 /��� D /�=kBT. Even for
a system far from equilibrium we can measure fluctuations
and the response to external field and the ratio might be used
as an effective temperature, Tef f. Such a concept of tempera-
ture does not generally have the same thermal meaning of
ordinary temperature, and it can depend, for example, on the
aging time �2,3�, still it is a useful concept since it can be
used to quantify fluctuation-dissipation relation in complex
systems where standard meaning of thermal temperature is
not valid.

We show that non-self-averaging can lead to fluctuations
in the effective temperature and that the effective tempera-
ture depends sensitively on the initial conditions. In fact the
usual Einstein relation itself is not valid in the following
sense. In systems which are weakly disordered and self-
averaging if we have two systems which are statistically
identical the measurement of diffusivity in sample A gives a
prediction of the mobility in sample B according to the Ein-
stein relation. However, we argue below rather generally and
in detail with regard to the quenched trap �QT� model that
for systems which exhibit subdiffusion due to quenched dis-
order the Einstein relation does not hold in this sense. It does
hold as we discuss below only after averaging over many
systems however such an average does not necessarily exist
in real measurements.

Previously Fielding and Sollich �4,5� investigated the
fluctuation-dissipation ratio for the glassy phase of the an-
nealed trap model, showing that the correlation function and

response function of an arbitrary observable yield an effec-
tive temperature which depends on the observable �thus the
effective temperature is specific to an observable and not
general�. They have used the annealed version of the trap
model which has temporal fluctuations but does not have in
it spatial disorder neither quenched disorder. Here we inves-
tigate the QT model which exhibits anomalous subdiffusion,
and unlike the previous model �4,5� we consider a system
with spatial quenched disorder which gives rise to the prob-
lem of self-averaging �11� �the same problem does not exist
in annealed models�. Usually, Tef f depends both on the ex-
periment time t and the aging time �2–6� however here we do
not consider aging effects at all since violations of Einstein
relation are found already in the nonaging case.

II. QUENCHED TRAP MODEL

We consider an infinite one dimensional lattice whose
spacing, a, is equal 1. The potential energy, Ex, of the x site
is random and distributed identically and independently by
the rule ��E�= �1 /Tg�e−E/Tg �12,13�, however, once the poten-
tial energy at some site x is raffled it stays constant in time
�quenched disorder�. The lattice is coupled to a heat bath
with temperature T. This coupling has two results: the first a
particle which is placed on the lattice undergoes a random
walk between nearest neighbors. Specifically, with probabil-
ity q �1−q� the particle jumps to the right �left� and for the
unbiased case with no external force q= 1

2 . Second the aver-
age time, �x, that the particle waits in any site x, is given by
Arrhenius law �x=exp�Ex /T�. Notice that a small change in
Ex leads to exponential change in �x. ����, the probability
density function �PDF� of the waiting times can be easily
calculated

���� = ��−�1+��, �1�

where �=T /Tg and ��1. Notice that for ��1 �T�Tg�, all
the moments of � diverge, this leads to anomalous diffusion
�12,14�, aging �15�, and nontrivial occupation times �16�. A
constant weak external force applied to the system shifts q
from 1

2 to 1+h
2 , where h=F /2kBT �12�.
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III. NON SELF AVERAGING FOR EINSTEIN RELATION

For particles exhibiting anomalous diffusion, transport
properties such as D and � are time dependent. Hence we
investigate x�t� and x2�t�, the thermal mean and mean-square
displacement of particles interacting with a thermal bath. The

overline is a thermal average ¯̄ with fixed initial conditions
and brackets �¯ � are ensemble averages over the disorder.
For unbiased diffusion �x�t��0=0 and �x2�t��0� t	, where the
lower subscript . . .0 denotes that no external force is applied
on the system. When 	=1 the diffusion is called normal,
whereas for anomalous diffusion 	�1. When external driv-
ing force, F, is applied on the system the symmetry is broken
and then �x�t��F� t	F �14,17�.

The effective temperature is

1

kBTef f
AB =

2

F

xA�t�F

xB
2�t�0

, �2�

where the indices AB mean that we measure the response
xA�t�F and fluctuations xB

2�t�0 over two independent systems
�18�. Similarly 1 /kBTef f

AA is the effective temperature mea-
sured on the same sample with identical initial conditions
�see precise definition below� for the two measurements of
response and diffusion. Usual Einstein relation implies
1 /Tef f

AA =1 /Tef f
AB =1 /T, at least when the measurement time is

long. In the first part of this paper we investigate cases where
Tef f

AB is random and then we consider its average.
The response of particles to an external field in a disor-

dered quenched system exhibits linear response with respect
to the field only for short times. For any finite external field
there exists a time we call th where the response is nonlinear
with respect to the field. This time was estimated in Ref.
�15�, and it was shown th�h−�1+��/�. When h→0 we have
th→
 however in any measurement or simulation h is finite
and this time scale must be taken into consideration.

In Fig. 1 simulation results for T /Tef f
AA versus log�t / th� �for

scaling we take th=h−�1+��/�� show that if we prepare the
particles in the same sample and with the same initial con-
ditions and then measure separately the diffusion and mobil-
ity the effective temperature is equal to the thermal tempera-
ture even in the anomalous diffusion phase of the model T
�Tg. This however happens only for times shorter than th,
once usual linear response breaks down we see an effective
temperature Tef f

AA which depends on measurement time, and it
fluctuates from sample to sample �20�.

In contrast if we calculate T /Tef f
AB �Fig. 2� we see that Tef f

AB

is not equal to the temperature when T�Tg. In fact T /Tef f
AB is

a random function of time which depends on the particular
realization of disorder which is evident from the scatter of
data. We will soon discuss the average over disorder of
T /Tef f

AB. Notice that in Fig. 2, in the phase of normal diffusion
T�Tg �the case �=2�, we find Tef f

AB �T for long enough
times and the sample to sample fluctuations are absent. De-
viations of the effective temperature from thermal tempera-
ture are found for short times even in the ordered phase T
�Tg which is expected since the particles must have enough
time to sample the system. Namely, only in the glassy phase
T�Tg we have deviations from usual meaning of tempera-
ture when we investigate systems with no ensemble averag-
ing. This is clearly related to the divergence of the average
waiting time in Eq. �1�: if the average waiting time is infinite
we can never average for long enough times so that fluctua-
tions and response become identical, in complete contrast to
the usual meaning of the Einstein relation.

Since we observe for T�Tg deviations from usual Ein-
stein relation, in the sense that Tef f

AB �T, we see that the Ein-
stein relation is valid only in the following two ways. The
first is when we make ensemble averages. Then as well
known the Einstein relation holds after thermal and ensemble
averaging �12�

FIG. 1. �Color online� Simulation results of T /Tef f
AA versus log�t / th� in the glassy phase T�Tg. For various � and h we see Tef f

AA 	T in the
time regime of t� th and without any averaging over the disorder. For longer times Tef f

AA is random as expected in this nonlinear-response
regime. The averaged over disorder curve �solid line� is in agreement with Ref. �15�. The figure illustrates that Tef f

AA 	T for t� th.
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�x̄�t��F =
F

2kBT
�x2�t��0 t � th. �3�

However in experiments we might not always be averaging
over many samples hence this relation must be used with
care. The second case is as mentioned when we do not use
ensemble average but use the same initial conditions for both
the response and the diffusion measurements that is we must
be able to prepare the system in the same state with respect
to the disorder which might be very difficult in practice. In
contrast the validity of Einstein relation for T�Tg is general
in the long time limit and does not dependent on the way we
prepare the system.

IV. AVERAGE EFFECTIVE TEMPERATURE

We now investigate the average inverse effective tempera-
ture �1 /Tef f

AB� in the glassy phase. Is this average equal to the
inverse thermal temperature or do we find that the average
inverse effective temperature is different from the thermal
one? Does it depend on the measurement time? Is the aver-
age effective temperature finite? To begin with the analysis
we consider a mean-field �MF� approach. In this approach
we replace the disordered system with an ordered one, how-
ever using the averaged waiting time PDF Eq. �1� to describe
sojourn times. The particles then perform a continuous-time
random walk �CTRW� �12�, where a particle waits between
jumps, with waiting times distributed according to Eq. �1�.
Within this annealed approach xF�hNF and x0

2�N0, where
NF and N0 are independent random numbers of jumps in

FIG. 3. �Color online� Simulation results of ef f
−1 versus log�t / tJ�. In the QT model, for different �-s with h=0.008−ef f

−1 attains a constant
value when t� tJ. In the CTRW approach an inverse logarithmic decrease to zero of Tef f

MF is shown �dashed line�.

FIG. 2. �Color online� Simulation results of T /Tef f
AB versus log�t / th� with h=0.008. Two examples of the invalidity of the Einstein relation

for ��1 and an additional example for �=2 where Tef f
AB 	T. Deviation of Tef f

AB from T can be seen even for �=2 when t is small �19�.
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CTRW. To calculate the MF effective temperature we use

T

Tef f
MF = 
 xF

hx0
2� = N̄
 1

N
� , �4�

where N̄ and �N−1� are calculated with CTRW theory �see
details below�. Even for normal CTRW �T�Tg� the average
�N−1� diverges since there is always a finite probability of not
making a jump. In practice �i.e., in simulation or experiment�
the probability to encounter dynamics with no jumps is very
small, in fact if the particle does not move at all clearly there
is no sense discussing mobility or diffusivity. Certainly, mea-
surements for very long times will solve this problem if we
take first time to be long and only then the number of sys-
tems in our ensemble to be large. To estimate the minimum
time for simulation �which should be much smaller then th�,
we note that the average number of systems n which did not
make any jump �particles stuck in place� is �n�= �1
−�1

t ����d��m, where m is the total number of systems in our
ensemble. Hence �n��mt−�. Now, we must have �n� /m�1.
If we take �n� /m=� to be a small number we find that the
measurement time should be larger then tJ=�−1/�. To summa-
rize we must have tJ� t� th to investigate a meaningful ef-
fective temperature.

The probability of making N jumps �21� in Laplace t
→s space is PN�s�= �1−��s����s�N /s, where ��s� is the
Laplace transform of the waiting time PDF Eq. �1�. For 0
���1 ��s��1−�s�, with �=��1−�� and s→0. It is easy

to show that N̄�t�� t�
� /��1+��, where t�=�−1/��1−��t. In

general N−1 diverges because of the probability to N=0,
however, N�0 is assured by the condition t� tJ, as already
explained. By definition N−1 is

N−1�t� = 
N=0



PN�t�

N
= �PN�t�

N
�

N=0
+ 

N=1



PN�t�

N
, �5�

neglecting the PN�t� �N=0 term

N−1�s� �
1 − �

s

N=1



�N

N
= −

1 − �

s
ln�1 − �� . �6�

Substituting ��s� in Eq. �6� and using Tauberian theorem
�21,22�, the final result is

N−1�t� �
1 − �

��2 − ��
t�
−� ln�t�

�� �7�

for t→
. Using Eq. �7� and N̄�t� gives

T

Tef f
MF �

1 − �

��1 + ����2 − ��
ln�t�

�� . �8�

We see that according to this MF approach the effective tem-
perature depends on measurement time and goes to zero as
1 / ln�t� for long times.

To investigate the averaged effective temperature, beyond
MF, we numerically calculated �1 /Tef f

AB�, using Eq. �2�, i.e.,
�F /2kBT�ef f = �xA�F�xB

2 −1�0, where ef f ��T /Tef f
AB� is a di-

mensionless effective inverse temperature. Figure 3 presents
the behavior of ef f

−1 versus log�t / tJ�. Analytical results are
shown for the CTRW model with �=0.5 and simulation re-
sults for the QT model with �=0.3, 0.5, 0.7, and h=0.008.
From Fig. 3 we see that for long enough times ef f

−1 reaches a
constant value, namely, our results converge and the average
effective temperature attains a finite value �23�. This behav-
ior is different from the MF theory where Tef f

MF�1 / ln�t�.
Since when t� th nonlinear effect appears, the results are
shown for t� th. The simulations were made over 104 real-
izations with 103 particles on each realization. In our simu-
lation we choose to scale our time with tJ to obtain data
collapse on a reasonable scale. We choose �=0.02 and we
have 104 realizations. For t= tJ we find 200 frozen realiza-
tions �that we had to remove from the average�, and for t
=100tJ we find only around 15 frozen ones �corresponding to

FIG. 4. �Color online� Results of ef f
−1 versus � for t=105. In the QT model a phase transition is seen around �=1 in the slope of ef f

−1 :
For ��1, ef f

−1 �1 whereas for ��1, ef f
−1 has some finite value. The MF CTRW theory predicts a phase transition at �=1. In addition an

analytical result for t=1050 illustrates that Tef f
MF is a step function for t→
 although convergence to t→
 limit is extremely slow.
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��. At such long times our simulations converge �see Fig. 3�.
Hence, roughly speaking, convergence is controlled by the
condition that particles make many jumps.

The simulations shown in Fig. 4 present results of ef f
−1

versus � on the background of the analytical results for
Tef f

MF /T �dotted curves�. The results are for t=105 with h
=0.001. This time is in the range of tJ� t� th for ��0.34.
For QT model ef f

−1 is continuous and finite; however, the
slope of ef f

−1 seems not continuous around T	Tg. Also the
analytical result for CTRW model with t=1050 is shown,
which illustrates that Tef f

MF is a step function for t→
, where
Tef f

MF→0 for ��1 and Tef f
MF	T for ��1 with phase transi-

tion at �=1. For finite time �here t=105� still a phase transi-
tion appears near �=1. However this MF theory fails to give
a quantitative agreement with QT model, indicating that
quenched and annealed approaches are fundamentally differ-
ent. For Fig. 4 the simulations were made over 103 realiza-
tions with 103 particles on each realization.

V. DISCUSSION

Similar effects are expected to be found for other models
of anomalous diffusion in quenched disordered systems.
Models of anomalous diffusion on comb structures �models
of loopless random fractal� or models of anomalous diffusion

of a particle on structures with distributed dangling bonds in
the presence of bias �12� are also characterized by a waiting
time distribution with an infinite mean similar to Eq. �1�.
Generally, aging, non-self-averaging, and anomalous diffu-
sion are found in these systems, hence the basic violation of
Einstein relation Tef f

AB �T is expected to be general within the
anomalous phase of these models.

In ordinary statistical mechanics temperature, T, describes
equilibrium properties of a system and also the ratio of fluc-
tuation and dissipation. Does the effective temperature we
found here have a similar dual meaning? Our finding in Fig.
4 indicates ef f

−1 	� using the definitions of  and � one gets
�1 /Tef f

AB�	Tg
−1, thus the effective temperature is Tg. This ef-

fective temperature characterizes the fluctuation dissipation
ratio. Previous work �16� investigated the occupation time
statistics of a particle in a binding potential U�x�, the relevant
Boltzmann factor describing equilibrium properties was
exp�−U�x� /Tg�. Thus both for thermal equilibrium �16� and
for the fluctuation dissipation ratio found here the relevant
temperature is Tg. In this sense the effective temperature has
a broad meaning, similar to the ordinary temperature, T.
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